Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Int J Mol Sci ; 23(14)2022 07 20.
Article in English | MEDLINE | ID: covidwho-1938842

ABSTRACT

Broad-spectrum antiviral agents that are effective against many viruses are difficult to develop, as the key molecules, as well as the biochemical pathways by which they cause infection, differ largely from one virus to another. This was more strongly highlighted by the COVID-19 pandemic, which found health systems all over the world largely unprepared and proved that the existing armamentarium of antiviral agents is not sufficient to address viral threats with pandemic potential. The clinical protocols for the treatment of COVID-19 are currently based on the use of inhibitors of the inflammatory cascade (dexamethasone, baricitinib), or inhibitors of the cytopathic effect of the virus (monoclonal antibodies, molnupiravir or nirmatrelvir/ritonavir), using different agents. There is a critical need for an expanded armamentarium of orally bioavailable small-molecular medicinal agents, including those that possess dual antiviral and anti-inflammatory (AAI) activity that would be readily available for the early treatment of mild to moderate COVID-19 in high-risk patients. A multidisciplinary approach that involves the use of in silico screening tools to identify potential drug targets of an emerging pathogen, as well as in vitro and in vivo models for the determination of a candidate drug's efficacy and safety, are necessary for the rapid and successful development of antiviral agents with potentially dual AAI activity. Characterization of candidate AAI molecules with physiologically based pharmacokinetics (PBPK) modeling would provide critical data for the accurate dosing of new therapeutic agents against COVID-19. This review analyzes the dual mechanisms of AAI agents with potential anti-SARS-CoV-2 activity and discusses the principles of PBPK modeling as a conceptual guide to develop new pharmacological modalities for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
2.
Molecules ; 27(7):2180, 2022.
Article in English | MDPI | ID: covidwho-1762561

ABSTRACT

Since the time of its appearance until present, COVID-19 has spread worldwide, with over 71 million confirmed cases and over 1.6 million deaths reported by the World Health Organization (WHO). In addition to the fact that cases of COVID-19 are increasing worldwide, the Delta and Omicron variants have also made the situation more challenging. Herein, we report the evaluation of several thiazole/thiadiazole/benzothiazole based thiazolidinone derivatives which were chosen from 112 designed derivatives by docking as potential molecules to inhibit the main protease of SARS-CoV-2. The contained experimental data revealed that among the fifteen compounds chosen, five compounds (k3, c1, n2, A2, A1) showed inhibitory activity with IC50 within the range of 0.01–34.4 μΜ. By assessing the cellular effects of these molecules, we observed that they also had the capacity to affect the cellular viability of human normal MRC-5 cells, albeit with a degree of variation. More specifically, k3 which is the most promising compound with the higher inhibitory capacity to SARS-CoV-2 protease (0.01 μΜ) affects in vitro cellular viability only by 57% at the concentration of 0.01 μM after 48 h in culture. Overall, these data provide evidence on the potential antiviral activity of these molecules to inhibit the main protease of SARS-CoV-2, a fact that sheds light on the chemical structure of the thiazole/thiadiazole/benzothiazole based thiazolidin-4-one derivatives as potential candidates for COVID-19 therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL